學系成員

瑪莎(Babasaheb M. Matsagar) 助理教授

學歷

印度科學與創新研究院博士

印度巴巴薩海布·安貝德卡博士理工大學碩士

印度巴巴薩海布·安貝德卡博士理工大學學士

經歷

國立臺灣大學化學工程系博後研究員

研究專長

  1. 生醫材料
  2. 綠色化學
  3. 環境永續
  4. 催化應用材料合成
  5. 離子液體
  6. 均相催化和異相催化

期刊論文

  1. Synergistic pseudocapacitive and double-layer contributions in SrFe₁₂O₁₉/carbon black composite for symmetric supercapacitors; J. Bushion, B. M. Matsagar, C.-Y. Kuo, Imed B.,T. Alshahrani, M. Govindasamy* Colloids Surf., A, 2026,139227. https://www.sciencedirect.com/science/article/pii/S0927775725031310
  2. Single-atomic Ni-N4 biofuel cell for mimicking intramolecular electron-harnessing of laccase; T. Dey, A. Yadav, N. Seal, B. M. Matsagar, N. C.-R. Chen, P. Yadav, K. C.-W. Wu, A. Bano, S. Dutta.
  3. https://onlinelibrary.wiley.com/doi/full/10.1002/ange.202511892
  4. Biomass-derived functionalized carbon embedded Ru nanoparticles for efficient γ-valerolactone production from levulinic Acid: Synergistic effect and optimization; T. T. Nguyen, D. D. Vu Ngoc, H. L. Thi, A. T. Thanh Pham, B. M. Matsagar, K. C.-W. Wu, C. V. Nguyen*, ChemCatChem, 2025, e202500271.
  5. https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/cctc.202500271
  6. Ionic liquid-catalyzed synthesis of biomass-derived tri(furyl)methanes: A green approach for electrochromic device fabrication; B. M. Matsagar*, E. C. Atayde, D.-C. Chen, K.-C. Ho, L.-C. Chen, K. C.-W. Wu, ChemCatChem, 2024, e202401625, DOI: 10.1002/cctc.202401625.
  7. https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/cctc.202401625
  8. Fe-Single-atom incorporated wood-derived anode with Fe-N-C/Fe3C structural unit and hollow diffusion sites for enhanced sodium-ion storage; R. Patil, P. K. Pathak, M. Mishra; B. M. Matsagar, A. Mohini, N. C.-R. Chen, K. C.-W. Wu, A. Banoe, R. R. Salunkhe, S. Dutta*, Small 2025, DOI: 10.1002/smll.202507064sm.
  9. https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.202507064
  10. Interfacial-bulk electrochemistry of sodium-ion storage in multiwalled carbon nanofiber anode with Incorporated Mn−N4 Single-Atoms; A. Yadav, P. K. Pathak, B. M. Matsagar, R. Patil, N. C.-R. Chen, R. R. Urkude, M. Ujihara, K. C.-W. Wu, R. R. Salunkheb, S. Dutta* Chem Eng. J., 2024, 525, 169716.
  11. https://www.sciencedirect.com/science/article/pii/S1385894725105597
  12. Green synthesis of waste-derived metal-organic frameworks for organic substance extraction from piggery wastewater as biofertilizers; S.-Y. Pan, Y.-Y. Hsiao, S. Negi, B. M. Matsagar, K. C.-W. Wu, ACS Sustainable Chem. Eng. 2024, 12, 49, 17793-17805.
  13. https://pubs.acs.org/doi/full/10.1021/acssuschemeng.4c07030
  14. Hydroxyl functionalized hexagonal boron nitride quantum dots as nanozyme for pesticides sensing through dual colorimetric and fluorometric platform: A combined experimental and theoretical study; C. Hazarika, G. Neog, E. Roy, D. Gogoi, M. R. Das, K. Sarmah, A. K. Guha, R. Konwar, B. M. Matsagar, K. C-W Wu, Chem. Eng. J. 2024, 15, 156365.
  15. https://www.sciencedirect.com/science/article/pii/S1385894724078562
  16. Viologen-functionalized biomass-based furan trimer as a multi-coloring electrochromic material; E. C. A. Jr, Y.-C. Wang, B. M. Matsagar, L.-C. Chen, K.-C. Ho, K. C.-W. Wu, Mater. Today Sustainability, 2024, 27, 100878.
  17. https://www.sciencedirect.com/science/article/pii/S2589234724002148
  18. Rapid Electronic Transport Channel of Co-P with Mo in a Heterostructure Embedded with P, N Dual Doped Porous Carbon for Electrocatalytic Oxygen and Hydrogen Evolution; T. Dey, A. Rajput, G. Jhaa, B. M. Matsagar, N. C.‐R. Chen, N. Kumar, R. Salunkhe, K. C.‐W. Wu, B. Chakraborty, S. Dutta, ChemNanoMat, 2024, 10, e202400089.
  19. https://aces.onlinelibrary.wiley.com/doi/abs/10.1002/cnma.202400089
  20. DFT and experimental studies of the facet-dependent oxygen vacancies modulated WS2/BiOCl-OV S-scheme structure for enhanced photocatalytic removal of ciprofloxacin from wastewater, A. Kumar, P. Singh, V.-H. Nguyen, Q. V. Le, T. Ahamad, S. Thakur, B. M. Matsagar, S. Kaya, M. M. Maslov, K. C.-W. Wu, L. H. Nguyen, P. Raizada, Environ. Res., 2024, 250, 118519.
  21. https://www.sciencedirect.com/science/article/pii/S0013935124004237
  22. Wastewater treatment using membrane bioreactor technologies: removal of phenolic contaminants from oil and coal refineries and pharmaceutical industries; M. J. Khan, A. Wibowo, Z. Karim, P. Posoknistakul, B. M. Matsagar, K. C.-W. Wu and C. Sakdaronnarong*, Polymers, 2024, 16.
  23. https://www.mdpi.com/2073-4360/16/3/443
  24. Lignocellulosic biomass analysis: acidic lignin recovery, characterization, and depolymerization; S. K. Singh, B. M. Matsagar, P. L. Dhepe, Biomass Convers. Biorefin., 2024, 14, 5239, DOI: 10.1007/s13399-022-02705-9.
  25. https://link.springer.com/article/10.1007/s13399-022-02705-9
  26. MOF-catalyzed hydroxyalkylation-alkylation reaction for the controlled synthesis of furan oligomers; E. C. Atayde Jr., B. M. Matsagar, Y.-C. Wang, K. C.-W. Wu, Appl. Catal. A, 2023, 669, 119492, DOI: 10.1016/j.apcata.2023.119492.
  27. https://www.sciencedirect.com/science/article/pii/S0926860X23004726
  28. Coordinately unsaturated single Fe-atoms with N vacancies and enhanced sp3 carbon defects in Fe–N(sp2)–C structural units for suppression of cancer cell metabolism and electrochemical oxygen evolution; A. Yadav, N. Hiremath, B. Saini, B. M. Matsagar, P.-C. Han, M. Ujihara, M. H. Modi, K. C.-W. Wu, R. K. Sharma, R. Vankayala, S. Dutta, Nanoscale, 2024, 16, 21416-21430.
  29. https://pubs.rsc.org/en/content/articlehtml/2024/nr/d4nr02553a
  30. Elevated temperature-driven coordinative reconstruction of an unsaturated single-Ni-atom structure with low valency on a polymer-derived matrix for the electrolytic oxygen evolution reaction, R. Patil, A. Rajput, B. M. Matsagar, N. C.-R. Chen, M. Ujihara, R. R. Salunkhe, P. Yadav, K. C.-W. Wu, B. Chakraborty, S. Dutta, Nanoscale 2024, 16, 7467.
  31. https://pubs.rsc.org/en/content/articlehtml/2024/nr/d4nr00337c
  32. A metallated graphene oxide foam with carbon nanotube shell for enhanced capacitance device; Rahul Patil, Lingaraj Pradhan, Babasaheb M. Matsagar, Rahul R. Salunkhe, Kevin C.-W. Wu, Bikash K. Jena and Saikat Dutta, RSC Appl. Interfaces, 2024, DOI: 10.1039/D3LF00226H.
  33. https://pubs.rsc.org/en/content/articlehtml/2024/lf/d3lf00226h
  34. An improved Hummers method derived graphene oxide wrapped ZIF-8 polyhedron derived porous heterostructure for symmetric supercapacitor performance; R. Patil, N. Kumar, B. M. Matsagar, K. CW Wu, R. R. Salunkhe, S. Dutta, RSC Sustain., 2024, 2, 233-238, DOI: 10.1039/D3SU00327B.
  35. https://pubs.rsc.org/en/content/articlehtml/2024/su/d3su00327b
  36. Efficient lignin depolymerization by continuous flow microreactor-assisted electrochemical advanced oxidation in water/co-solvent system; B. M. Matsagar, L. W.-Angkura, (first two author equal contribution), K. Lee, V. Pavarajarn, K. C.-W. Wu, Green Chem., 2024, DOI: 10.1039/D3GC03066K.
  37. https://pubs.rsc.org/en/content/articlehtml/2023/gc/d3gc03066k
  38. Biomass-based discrete furan oligomers as materials for electrochromic devices; E. C. A. Jr, G.-L. Fong, J.-Y. Yeh, B. M. Matsagar, Y.-C. Wang, D.-C. Chen, C.-H. Peng, Y.-P. Li, Y. Yamauchi., K,-C. Ho, K, C.-W. Wu, ACS Sustainable Chem. Eng. 2024, 12, 1, 459-469.
  39. https://pubs.acs.org/doi/full/10.1021/acssuschemeng.3c06285
  40. Acid-catalyzed hydrothermal treatment of sewage sludge: effects of reaction temperature and acid concentration on the production of hydrolysis by-products; V. T. Pham, C.-Y. Guan, P.-C. Han, B. M. Matsagar, K. C.-W. Wu, T. Ahamad, C.-Y. Chang, C.-P. Yu, Biomass Conversion Biorefinery, 2023, 13, 7533-7546.
  41. https://link.springer.com/article/10.1007/s13399-021-01495-w
  42. Furfural hydrogenation into tetrahydrofurfuryl alcohol under ambient conditions: Role of Ni-supported catalysts and hydrogen source; B. M. Matsagar*, T.-H. Li, N. V. Chi, S. A. Hossain, T. Ahamad, Y.-P. Li, K. C.-W. Wu, Ind. Crops Prod. 2023, 195, 116390.
  43. https://www.sciencedirect.com/science/article/pii/S0926669023001541
  44. O and S co-doping induced N-vacancy in graphitic carbon nitride towards photocatalytic peroxymonosulfate activation for sulfamethoxazole degradation; V. Hasija, P. Singh, S. Thakur, V.-H. Nguyen, Q. V. Le, T. Ahamad, S. M. Alshehri, P. Raizada, B. M. Matsagar, K. C.-W. Wu, Chemosphere, 2023, 320, 138015.
  45. https://www.sciencedirect.com/science/article/pii/S0045653523002825
  46. A metallic nickel site in a complex multimetallic design for controlled CO2 reduction and symmetric supercapacitor device; R. Patil, N. Kumar, S. Bhattacharjee, B. M. Matsagar, P.-C. Han, K. C.-W. Wu, R. R. Salunkhe, A. Bhaumik, S. Dutta, Mater. Today Chem., 2023, 28, 101374.
  47. https://www.sciencedirect.com/science/article/pii/S2468519423000010
  48. Influence of catalase encapsulation on Cobalt@Nanoporous carbon with multiwall shell for supercapacitor and polyurethane synthesis using carbon dioxide; R. Patil, N. Kumar, S. Bhattacharjee, H.-Y. Wu, P.-C. Han, B. M. Matsagar, K. C.-W. Wu, R. R. Salunkhe, A. Bhaumik, S Dutta, Chem. Eng. J., 2023, 453, 139874.
  49. https://www.sciencedirect.com/science/article/pii/S1385894722053542
  50. High-performance asymmetric supercapacitor device with nickel–cobalt bimetallic sites encapsulated in multilayered nanotubes; R. Patil, L. Pradhan, B. M. Matsagar, O. Agrawal, K. C.-W. Wu, B. Kumar Jena and S. Dutta, Energy Adv., 2023, 2, 1650-1659, DOI: 10.1039/d3ya00206c.
  51. https://pubs.rsc.org/en/content/articlehtml/2023/ya/d3ya00206c
  52. Continuous and ultrafast MOF synthesis using droplet microfluidic nanoarchitectonics; H.-Y. Wu, C.-L. Wu, W. L., B. M. Matsagar, K.-Y. Chang, J.-H. Huang and K. C. W. Wu, J. Mater. Cham., A, 2023, 11, 9427-9435.
  53. https://pubs.rsc.org/en/content/articlehtml/2005/1v/d2ta09932b
  54. Ultrastable conjugated microporous polymers containing benzobisthiadiazole and pyrene building blocks for energy storage applications; M. G. Mohamed, T. H. Mansoure, M. M. Samy, Y. Takashi, A. A. K. Mohammed, T. Ahamad, S. M. Alshehri, J. Kim, B. M. Matsagar, K. C.-W. Wu, S.-W. Kuo, Molecules, 2022, 27, 2025.
  55. https://www.mdpi.com/1420-3049/27/6/2025
  56. Metal complexes of the porphyrin-functionalized polybenzoxazine; G. Zhang, A. F. M. EL-Mahdy, L. R. Ahmed, B. M. Matsagar, S. A.-Saeedi, S.-W. Kuo, K. C.-W. Wu, Polymers, 2022, 14(3), 449.
  57. https://www.mdpi.com/2073-4360/14/3/449
  58. Chapter 1 - Agricultural waste-derived biochar for environmental management. in: Biochar in Agriculture for Achieving Sustainable Development Goals, (Eds.) D. C. W. Tsang, Y. S. Ok, Academic Press, pp. 3-13.; B. M. Matsagar, K. C.-W. Wu, 2022.
  59. https://www.sciencedirect.com/science/article/abs/pii/B9780323853439000264
  60. Lignin-derived syringol and acetosyringone from palm bunch using heterogeneous oxidative depolymerization over mixed metal oxide catalysts under microwave heating; R. Panyadee, A. Saengsrichan, P. Posoknistakul, N. Laosiripojana, S. Ratchahat, B. M. Matsagar, Kevin C.-W. Wu, Chularat Sakdaronnarong*, Molecules, 2021, 26, 7444.
  61. https://www.mdpi.com/1420-3049/26/24/7444
  62. A critical review on biochar-based engineered hierarchical porous carbon for capacitive charge storage; D. V. Cuong, B. M. Matsagar, M. Lee, M. S. A. Hossain, Y. Yamauchi, M. Vithanage, B. Sarkar, Y. S. Ok, K. C.-W. Wu, C.-H. Hou, Renewable Sustainable Energy Rev., 2021, 145, 111029.
  63. https://www.sciencedirect.com/science/article/pii/S1364032121003191
  64. One-step hydrogenolysis of 5-hydroxymethylfurfural to 1,2,6-hexanetriol using a Pt@ MIL-53-derived Pt@ Al2O3 catalyst and NaBH4 in aqueous media; B. M. Matsagar, H.-L. Sung, J.-Y. Yeh, C.-T. Chen, and K. C.-W. Wu, Sustainable Energy Fuels, 2021, 5, 4087-4094.
  65. https://pubs.rsc.org/en/content/articlehtml/2021/se/d1se00802a
  66. Recent progress in the development of biomass-derived nitrogen-doped porous carbon; B. M. Matsagar*, R.-X. Yang, S. Dutta, Y. S. Ok, and Kevin C.-W. Wu*, J Mater. Chem. A, 2021, 9(7), 3703-3728.
  67. https://pubs.rsc.org/en/content/articlehtml/2021/ta/d0ta09706c
  68. Synergistic effects of Pt-embedded, MIL-53-derived catalysts (Pt@Al2O3) and NaBH4 for water-mediated hydrogenolysis of biomass-derived furfural to 1,5-pentanediol at near-ambient temperature; J. Y. Yeh, B. M. Matsagar, S. S. Chen, H. Sung, D. C. W. Tsang, Y. P. Li, K. C.-W. Wu*, J. Catal. 2020, 390, 46-56.
  69. https://www.sciencedirect.com/science/article/pii/S0021951720302888
  70. Metal-organic framework (MOF)-derived catalysts for fine chemical production; H. Konnerth, B. M. Matsagar, S. S. Chen, M. H. G. Prechtl, F. K. Shieh, K. C.-W. Wu*, Coord. Chem. Rev. 2020, 416, 213319 (equal contribution of the first two authors).
  71. https://www.sciencedirect.com/science/article/pii/S0010854519307088
  72. Construction hierarchically mesoporous/microporous materials based on block copolymer and covalent organic framework; M. G. Mohamed, E. C. Atayde, B. M. Matsagar, J. Na, Y. Yamauchi, K. C.-W. Wu, S. W. Kuo, J. Taiwan Inst. Chem. Eng. 2020, 112, 180-192.
  73. https://www.sciencedirect.com/science/article/pii/S1876107020301656
  74. Effect of microwave-assisted wet torrefaction on liquefaction of biomass from palm oil and sugarcane wastes to bio-oil and carbon nanodots/nanoflakes by hydrothermolysis and solvothermolysis; A. Sangjan, P. Ngamsiri, N. Klomkliang, K. C.-W. Wu, B. M. Matsagar*, et al., Renewable Energy, 2020, 154, 1204-1217.
  75. https://www.sciencedirect.com/science/article/pii/S0960148120303955
  76. Highly-efficient Ru/Al-SBA-15 catalysts with strong Lewis acid sites for the water-assisted hydrogenation of p-phthalic acid; C. Mao, J. Zheng, B. M. Matsagar, R. K. Kankala, T. Ahamad, Y. Yang, K. C.-W. Wu, X Zhang, Catal. Sci. Technol., 2020, 10, 2443-2451.
  77. https://pubs.rsc.org/en/content/articlehtml/2020/cy/d0cy00047g
  78. Unraveling the highly selective nature of silver-based metal-organic complexes for the detection of metal ions: the synergistic effect of dicarboxylic acid linkers; C. V. Nguyen, B. M. Matsagar, T. Ahamad, S. M. Alshehri, W.-H. Chiang*, K. C.-W. Wu*, J. Mater. Chem. C, 2020, 8, 5051-5057.
  79. https://pubs.rsc.org/en/content/articlehtml/2020/tc/c9tc07078h
  80. Oxidation of biomass-derived furans to maleic acid over nitrogen-doped carbon catalysts under acid-free conditions; C. V. Nguyen, J. R. Boo, C. Liu, T. Ahamad, S. M. Alshehri, B. M. Matsagar*, K. C. W. Wu*, Catal. Sci. Technol., 2020, 10(5), 1498-1506.
  81. https://pubs.rsc.org/en/content/articlehtml/2020/cy/c9cy02364j
  82. Selective hydrogenation of furfural to tetrahydrofurfuryl alcohol over a Rh-loaded carbon catalyst in aqueous solution under mild conditions; B. M. Matsagar*, C-Y. Hsu, S. S. Chen, T. Ahamad, et al., Sustainable Energy Fuels, 2020, 4, 293-301.
  83. https://pubs.rsc.org/en/content/articlehtml/2019/se/c9se00681h
  84. Advances in lignin valorization towards bio-based chemicals and fuels: Lignin biorefinery; Y. Cao, S. S. Chen, S. Zhang, Y. S. Ok, B. M. Matsagar, et al., Bioresour. Technol. 2019, 291, 121878.
  85. https://www.sciencedirect.com/science/article/pii/S0960852419311083
  86. MIL-53-NH2-derived carbon-Al2O3 composites supported Ru catalyst for effective hydrogenation of levulinic acid to γ-valerolactone under ambient conditions; C. V. Nguyen, B. M. Matsagar, J.-Y. Yeh, W.-H. Chiang*, K. C.-W. C Wu*, Molecular Catal. 2019, 475 110478.
  87. https://www.sciencedirect.com/science/article/pii/S2468823119303116
  88. Effect of solvent, role of formic acid and Rh/C catalyst for the efficient liquefaction of lignin; B. M. Matsagar, Z.-Y. Wang, C. Sakdaronnarong, S. S. Chen, D. C. W. Tsang*, K. C.-W. Wu*, ChemCatChem, 2019, 11, 4604-4616.
  89. https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/cctc.201901010
  90. An efficient method for the synthesis of 2,4,5-trisubstituted imidazoles using lactic acid as promoter; J. Sonar, S. Pardeshi, S. Dokhe, R. Pawar, K. Kharat, A. Zine, B. M. Matsagar K. C.-W. Wu, S. Thore, SN Applied Sciences, 2019, 9, 1-7.
  91. https://link.springer.com/article/10.1007/s42452-019-0935-0
  92. Metal organic framework-derived nickel phosphide/graphitic carbon hybrid for electrochemical hydrogen generation reaction; V. Veeramani, B. M. Matsagar, K. C.-W. Wu*, et. al. J. Taiwan Inst. Chem. Eng., 2019, 96, 634-638.
  93. https://www.sciencedirect.com/science/article/pii/S1876107018306734
  94. Efficient liquid-phase hydrogenolysis of a lignin model compound (benzyl phenyl ether) using a Ni/carbon catalyst; B. M. Matsagar, T.-C. Kang, Z.-Y. Wang, T. Yoshikawa, et al., React. Chem. Eng., 2019, 4, 618-626.
  95. https://pubs.rsc.org/en/content/articlehtml/2019/re/c8re00304a
  96. Sequential fractionation of palm empty fruit bunch and microwave-assisted depolymerization of lignin for producing monophenolic compounds; R. Panyadee, P. Posoknistakul, W. Jonglertjunya, P.K. -Lohsoontorn, N. Laosiripojana, B. M. Matsagar, et. al., ACS Sustainable Chem. Eng., 2018, 1, 16896.
  97. https://pubs.acs.org/doi/full/10.1021/acssuschemeng.8b04246
  98. Metal-organic framework (MOF)-derived effective solid catalysts for valorization of lignocellulosic biomass; B. M. Matsagar, Y.-T. Liao, K. C.-W. Wu* ACS Sustainable Chem. Eng., 2018, 6(11), 13628.
  99. https://pubs.acs.org/doi/full/10.1021/acssuschemeng.8b03683
  100. High surface area nanoporous carbon derived from high quality jute from Bangladesh; J. H. Khan, J. Lin, C. Young, B. M. Matsagar, K. C.-W. Wu*, et. al., Material Chem. Phy., 2018, 216, 491.
  101. https://www.sciencedirect.com/science/article/pii/S0254058418304887
  102. A novel method for the pentosan analysis present in jute biomass and its conversion into sugar monomers using acidic ionic liquid; B. M. Matsagar*, S. Hossain, T. Islam, Y. Yamauchi, K. C.-W. Wu*, J. Visualized Exp. 2018, (136) e57613.
  103. https://app.jove.com/v/57613/a-novel-method-for-pentosan-analysis-present-jute-biomass-its
  104. Glucose isomerization catalyzed by bone char and the selective production of 5-hydroxymethylfurfural in aqueous media; B. M. Matsagar, C. V. Naguyen, S.A. Hossain, T. Islam, et al., Sustainable Energy Fuels, 2018, 2(10) 2148-2153.
  105. https://pubs.rsc.org/en/content/articlehtml/2018/se/c8se00339d
  106. Direct production of furfural in one-pot fashion from raw biomass using Brønsted acidic ionic liquids; B. M. Matsagar, S.A. Hossain, T. Islam, H.R. H. R. Alamri, et al., Sci Rep., 2017, 7(1), 13508.
  107. https://www.nature.com/articles/s41598-017-13946-4
  108. Effects of cations, anions and H+ concentration of acidic ionic liquids on the valorization of polysaccharides into furfural; B. M. Matsagar, & Paresh Dhepe*, New J. Chem., 2017, 41 (14) 6137.
  109. https://pubs.rsc.org/en/content/articlehtml/2012/nj/c7nj00342k
  110. Conversion of concentrated sugar solutions into 5-hydroxymethyl furfural and furfural using Brönsted acidic ionic liquids; B. M. Matsagar, M. K. Munshi, A. A. Kelkar, P. L. Dhepe*, Catal. Sci. Technol. 2015, 5, 5086.
  111. https://pubs.rsc.org/en/content/articlehtml/2015/cy/c5cy00858a
  112. Brönsted acidic ionic liquid-catalyzed conversion of hemicellulose into sugars; B. M. Matsagar & Paresh Dhepe*, Catal. Sci. Technol. 2015, 5, 531.
  113. https://pubs.rsc.org/en/content/articlehtml/2015/cy/c4cy01047g

相關著作與專利

  1. A novel process for the conversion of hemicellulose into C5 sugar, India, 443283, P. L. Dhepe and B. M. Matsagar; Granted on 07/08/2023
  2. A process for depolymerization of lignin, Canada, 2911870, P. L. Dhepe, A. A. Kelkar, B. M. Matsagar, and S. K. Singh; Granted on 22/12/2020
  3. Highly selective oxidation of lignin oligomers by a new metal-organic framework catalyst, Taiwan, TW1711602B, K. C.-W. Wu, B. M. Matsagar, Z. Y. Wang, and P. C. Han; Granted on 01/12/2020
  4. Acidic ionic liquid catalyzed depolymerization of lignin, India, 323865, P. L. Dhepe, A. A. Kelkar, B. M. Matsagar, and S. K. Singh; Granted on 29/10/2019
  5. Novel process for conversion of hemicellulose into C5 sugars using ionic liquids, Europe, EP3097111B1, P. L. Dhepe and B. M. Matsagar; Granted on 05/12/2018
  6. A process for depolymerization of lignin, Japan, JP6395812B2, P. L. Dhepe, A. A. Kelkar, B. M. Matsagar, and S. K. Singh; Granted on 26/09/2018
  7. Process for conversion of hemicellulose into C5 sugars using ionic liquids USA, US9988413B2, P. L. Dhepe and B. M. Matsagar: Granted on 05/06/2018
  8. A process for depolymerization of lignin, Europe, EP2994505B1, P. L. Dhepe, A. A. Kelkar, B. M. Matsagar, and S. K. Singh; Granted on 05/04/2017
  9. Process for depolymerization of lignin, USA, US9550710B2, P. L. Dhepe, A. A. Kelkar, B. M. Matsagar, and S. K. Singh; Granted on 24/01/2017
  10. Novel process for conversion of hemicellulose into C5 sugars using ionic liquids, World, WO/2015/111086A1, P. L. Dhepe and B. M. Matsagar; Application filed on 21/01/2015
  11. A process for depolymerization of lignin, World, WO/2014/181360A1, P. L. Dhepe, A. A. Kelkar, B. M. Matsagar, and S. K. Singh; Application filed on 09/05/2014

得獎事蹟

1. Listed among the world’s top 2% of scientists (Stanford–Elsevier).

2. Bowei Research Conference (BRC) Award (2026).

3. Merck Young Scientist International Award (2023).

4. Young Investigator Award, Taipei International Conference on Catalysis (TICC 2022).

5. Outstanding Poster Award, First Joint Thailand–Taiwan Workshop on Catalysis for Carbon Neutrality.

6. Research featured in an NTU News Report and highlighted on the NTU website (2017).

7. Media recognition and coverage for research on converting biomass into furfural (Times of Taiwan, Taipei Times, Indian ExpressNTU News Report, and the NTU website).

8. Hindustan Platinum Award for Best Poster Presentation, National Symposium on Catalysis (2015).

9. Senior Research Scholar Fellowship (2013), Council of Scientific & Industrial Research (CSIR).